VIRS based detection in combination with machine learning for mapping soil pollution

نویسندگان

چکیده

Widespread soil contamination threatens living standards and weakens global efforts towards the Sustainable Development Goals (SDGs). Detailed mapping is needed to guide effective countermeasures sustainable remediation operations. Here, we review visible infrared reflectance spectroscopy (VIRS) based detection methods in combination with machine learning. To date, proximal, airborne spaceborne carrier devices have been employed for detection, allowing large areas be covered at low cost minimal secondary environmental impact. In this way, contaminants can monitored remotely, either directly or through correlation components (e.g. Fe-oxides, organic matter, clay minerals). Observed vegetation spectra has also proven an indicator pollution. Calibration models on learning are used interpret spectral data predict levels. The algorithms include partial least squares regression, neural networks, random forest. processes underlying each of these approaches outlined review. Finally, current challenges future research directions explored discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

Emotion Detection in Persian Text; A Machine Learning Model

This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...

متن کامل

Machine Learning for Host-based Anomaly Detection

Machine Learning for Host-based Anomaly Detection by Gaurav Tandon Dissertation Advisor: Philip K. Chan, Ph.D. Anomaly detection techniques complement signature based methods for intrusion detection. Machine learning approaches are applied to anomaly detection for automated learning and detection. Traditional host-based anomaly detectors model system call sequences to detect novel attacks. This...

متن کامل

Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media

Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...

متن کامل

Dust source mapping using satellite imagery and machine learning models

Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Environmental Pollution

سال: 2021

ISSN: ['1873-6424', '0269-7491']

DOI: https://doi.org/10.1016/j.envpol.2020.115845